Добро пожаловать

Портал для автолюбителей

Поехали

Как работает система впрыска с обратной связью?

Как работает система впрыска с обратной связью?

Как работает система впрыска с обратной связью?

как работает инжекторДля понимания того, как работает система впрыска инжекторного автомобиля, нужно, во-первых, иметь желание разобраться в этом, а во-вторых - нужна информация. Именно поэтому мы и попробуем в общих чертах дать описание функционирования системы впрыска, рассказать как это все работает, и какие действия может предпринять автовладелец в случае, когда что-то не работает.

Принцип работы системы впрыска

В двух словах процесс работы системы впрыска выглядит так: масса воздуха, поступающая в двигатель, измеряется датчиком расхода воздуха, эти данные передаются компьютеру, который на основе этой информации, а также на основе некоторых других текущих параметров работы двигателя, таких, как температура двигателя, температура воздуха, скорость вращения коленчатого вала, степень открытия дроссельной заслонки, рассчитывает необходимое количество топлива, которое нужно сжечь в данном количестве воздуха.

После этого компьютер подает на форсунки электрический импульс нужной длительности, форсунки открываются, и топливо, находящееся под давлением в топливной магистрали, впрыскивается во впускной коллектор. Все, дело сделано.

В системе впрыска есть одна-единственная сложность - это сложная программа, находящаяся в памяти компьютера и составленная таким образом, чтобы учитывать все разнообразие режимов работы двигателя и внешних условий, в которых ему приходится работать, а механические же узлы и составные части ничего сложного из себя не представляют и их можно перечислить по пальцам: это бензонасос, перепускной клапан топливной магистрали, клапан поддержания холостых оборотов, форсунки. Ну и, естественно, датчики.

Как работает компьютер (ЭБУ) системы впрыска?

Начнем с компьютера управления системы впрыска. В памяти компьютера находятся собственно программа управления и набор так называемых "карт" (maps), в которых отражена необходимая для работы программы информация. При этом сама программа более-менее стандартна для любого двигателя, а вот карты, используемые ею, уникальны для каждой модели и каждой модификации двигателя.

Для большей наглядности можно представить себе простейшую программу, которая работает с двумя картами, одна из которых представляет собой трехмерную таблицу, в которой по горизонтали (вдоль оси X) заданы значения массы поступающего воздуха, по вертикали (вдоль оси Y) - значения оборотов двигателя, а вдоль оси Z - значения углов открытия дроссельной заслонки. На пересечении всех трех колонок и столбцов таблицы проставлены значения количества топлива, которое необходимо впрыснуть при данных условиях работы двигателя. Во второй карте, двумерной, заданы соответствия между количеством топлива и временем открытия форсунок, в результате из этой карты программа может узнать длительность электрического импульса, который должен быть подан на форсунки.

В процессе работы программа каждые несколько миллисекунд опрашивает датчики, сравнивает полученные значения с заданными в первой карте, выбирает из соответствующей ячейки содержащееся там значение количества топлива, потом переходит ко второй карте и выбирает исходя из этого значения требуемое время открытия форсунок. Далее следует импульс на форсунки - все, цикл завершен.

Описанный процесс отличается от реального тем, что на самом деле таких карт больше и в них отражены взаимные зависимости гораздо большего числа параметров, чем было перечислено, в том числе нагрузка на двигатель, температура двигателя, температура воздуха и даже высота над уровнем моря. Но цель работы программы управления та же - конечным результатом сбора и обработки данных от датчиков должна быть длительность электрического импульса на форсунку.

Таким образом, вся сложность заключается не в написании собственно программы, которая всего-то и делает, что сверяется последовательно с несколькими картами и в результате "добирается" до некоторого значения, а в самих картах, которые должны быть очень точными и подобраны под конкретную модификацию двигателя.

Для чего нужна обратная связь?

Обратная связь обеспечивается лямбда-зондом (датчиком кислорода). Необходимость ее обусловлена тем, что как бы ни были хороши и точны карты, находящиеся в памяти ЭБУ, каждый экземпляр двигателя все равно в той или иной мере отличается от остальных и требует индивидуальной подстройки топливной системы. В процессе эксплуатации двигателя также происходят изменения, связанные с его старением и износом, и которые тоже было бы неплохо компенсировать.

Кроме этого, сами карты могут быть изначально составлены не оптимально для некоторых сочетаний внешних условий и режимов работы двигателя и, таким образом, требовать корректировки. Именно эти задачи и позволяет решить наличие обратной связи.

работа инжектораНо главная цель при решении всех этих задач - это достижение наиболее полного сгорания горючей смеси в цилиндрах двигателя для получения наилучших характеристик его токсичности. Известно, что оптимальным для полного сгорания топлива является соотношение воздух/топливо равное 14.7:1. Это отношение называют "стехиометрическим".

Выглядит обратная связь так. После того, как компьютер определил необходимое количество топлива, которое нужно впрыснуть в текущий момент работы двигателя исходя из текущих условий и режима его работы, топливо сгорает и выхлопные газы поступают в выпускную систему. В этот момент с датчика кислорода считывается информация о содержании кислорода в выхлопных газах, на основании чего можно сделать вывод, а так ли все прошло, как было рассчитано, и не требуется ли коррекция состава горючей смеси.

Образно говоря, компьютер постоянно проверяет свои расчеты по конечному результату, информацию о котором он получает от датчика кислорода, и, если это требуется, выполняет окончательную точную подстройку состава горючей смеси. Но так происходит не всегда - в некоторых режимах работы двигателя компьютер игнорирует информацию от датчика кислорода и руководствуется только своими собственными расчетами.

Режимы управления системы впрыска

Компьютер системы управления впрыском с обратной связью в процессе работы может находиться в одном из двух режимов управления - либо в режиме замкнутого контура, когда он использует информацию датчика кислорода в целях точной корректировки, либо в режиме разомкнутого контура, когда он игнорирует эту информацию. Ниже мы рассмотрим основные режимы работы двигателя и режимы управления.

1. Запуск двигателя. В момент запуска требуется, в зависимости от температуры как самого двигателя, так и окружающего воздуха, обогащенная горючая смесь с повышенным процентным содержанием топлива. Это всем известный факт, характерный вообще для всех бензиновых двигателей внутреннего сгорания, как карбюраторных, так и двигателей с впрыском, поэтому мы не станем подробно останавливаться на причинах. Скажем только, что соотношение воздух/топливо в этом режиме варьируется в среднем от 2:1 до 12:1. В этом режиме компьютер работает в режиме разомкнутого контура.

2. Прогрев двигателя до рабочей температуры. После запуска двигателя компьютер постоянно проверяет текущую температуру двигателя и в зависимости от этого параметра производит расчет состава горючей смеси, а также устанавливает требуемую величину прогревных оборотов посредством воздушного клапана. В процессе прогрева двигателя с ростом температуры соотношение воздух/топливо изменяется компьютером в сторону обеднения, а прогревные обороты также уменьшаются. В это же время происходит разогрев датчика кислорода в выпускном коллекторе до рабочей температуры. Компьютер при этом работает в режиме разомкнутого контура.

3. Холостой ход. По достижении заданной температуры двигателя и при условии достаточного для работы разогрева датчика кислорода (датчик кислорода начинает выдавать правильные показания только при температуре от 300C и выше) компьютер переключается в режим замкнутого контура и начинает использовать показания датчика кислорода для поддержания стехиометрического состава горючей смеси (14.7:1), обеспечивающего наименьший уровень содержания токсичных веществ в выхлопных газах.

4. Движение с постоянной скоростью, плавное увеличение или уменьшение скорости. В этом случае компьютер также находится в режиме замкнутого контура и использует показания датчика кислорода. Вы можете раскрутить двигатель хоть до 6500 об/мин, наполовину нажав педаль газа, но компьютер все - равно будет оставаться в режиме замкнутого контура, обеспечивая состав горючей смеси в пределах примерно от 14.5:1 до 15.9:1.

5. Резкое ускорение. Как только Вы нажимаете педаль газа "в пол" и полностью открываете дроссельную заслонку - компьютер безоговорочно переходит в режим разомкнутого контура. Под нагрузкой компьютер может переключиться в режим разомкнутого контура несколько раньше - уже при открытии дроссельной заслонки на 68 или более процентов от ее хода. При этом он будет поддерживать состав горючей смеси в пределах от 11.9:1 до 12:1 для получения большей мощности.

6. Принудительный холостой ход (торможение двигателем). Компьютер также переходит в режим разомкнутого контура в случаях, когда текущие обороты двигателя превышают величину оборотов холостого хода, а дроссельная заслонка полностью закрыта - например, когда Вы движетесь под уклон, убрав ногу с педали газа и не выключив передачу. При этом компьютер обеспечивает обедненный состав горючей смеси.

Таким образом, мы видим, что большую часть времени компьютер находится в режиме замкнутого контура, который обеспечивает оптимальный состав горючей смеси. Более того, находясь в этом режиме, компьютер "самообучается", корректируя и модифицируя карты, используемые в режиме разомкнутого контура, адаптируя их к текущим условиям эксплуатации и состоянию двигателя.

Все было бы просто замечательно, если бы не один фактор - лямбда-зонд имеет обыкновение выходить из строя в результате заправок этилированным бензином. Это приводит к тому, что рано или поздно после пробега по нашим дорогам система впрыска лишается своей способности к адаптации под текущие условия и работает строго по тем картам, которые изначально находились в памяти компьютера, постоянно находясь в режиме разомкнутого контура.

Следует заметить, что каталитический нейтрализатор и лямбда-зонд - это совершенно разные устройства. Оба эти устройства служат одной и той же цели - снижению уровня токсичности выхлопа, но выполняют каждое свою часть работы: лямбда-зонд помогает системе управления впрыском готовить оптимальную с точки зрения полноты сгорания горючую смесь, а нейтрализатор эту смесь дожигает.

Поделиться с друзьями:

Статьи по теме:
>

Designed by СТО 39